Given start and end point, produce a list of points through which line (or ray) will traverse.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112  | """
N-D Bresenham line algo
"""
import numpy as np
def _bresenhamline_nslope(slope):
    """
    Normalize slope for Bresenham's line algorithm.
    >>> s = np.array([[-2, -2, -2, 0]])
    >>> _bresenhamline_nslope(s)
    array([[-1., -1., -1.,  0.]])
    >>> s = np.array([[0, 0, 0, 0]])
    >>> _bresenhamline_nslope(s)
    array([[ 0.,  0.,  0.,  0.]])
    >>> s = np.array([[0, 0, 9, 0]])
    >>> _bresenhamline_nslope(s)
    array([[ 0.,  0.,  1.,  0.]])
    """
    scale = np.amax(np.abs(slope), axis=1).reshape(-1, 1)
    zeroslope = (scale == 0).all(1)
    scale[zeroslope] = np.ones(1)
    normalizedslope = np.array(slope, dtype=np.double) / scale
    normalizedslope[zeroslope] = np.zeros(slope[0].shape)
    return normalizedslope
def _bresenhamlines(start, end, max_iter):
    """
    Returns npts lines of length max_iter each. (npts x max_iter x dimension) 
    >>> s = np.array([[3, 1, 9, 0],[0, 0, 3, 0]])
    >>> _bresenhamlines(s, np.zeros(s.shape[1]), max_iter=-1)
    array([[[ 3,  1,  8,  0],
            [ 2,  1,  7,  0],
            [ 2,  1,  6,  0],
            [ 2,  1,  5,  0],
            [ 1,  0,  4,  0],
            [ 1,  0,  3,  0],
            [ 1,  0,  2,  0],
            [ 0,  0,  1,  0],
            [ 0,  0,  0,  0]],
    <BLANKLINE>
           [[ 0,  0,  2,  0],
            [ 0,  0,  1,  0],
            [ 0,  0,  0,  0],
            [ 0,  0, -1,  0],
            [ 0,  0, -2,  0],
            [ 0,  0, -3,  0],
            [ 0,  0, -4,  0],
            [ 0,  0, -5,  0],
            [ 0,  0, -6,  0]]])
    """
    if max_iter == -1:
        max_iter = np.amax(np.amax(np.abs(end - start), axis=1))
    npts, dim = start.shape
    nslope = _bresenhamline_nslope(end - start)
    # steps to iterate on
    stepseq = np.arange(1, max_iter + 1)
    stepmat = np.tile(stepseq, (dim, 1)).T
    # some hacks for broadcasting properly
    bline = start[:, np.newaxis, :] + nslope[:, np.newaxis, :] * stepmat
    # Approximate to nearest int
    return np.array(np.rint(bline), dtype=start.dtype)
def bresenhamline(start, end, max_iter=5):
    """
    Returns a list of points from (start, end] by ray tracing a line b/w the
    points.
    Parameters:
        start: An array of start points (number of points x dimension)
        end:   An end points (1 x dimension)
            or An array of end point corresponding to each start point
                (number of points x dimension)
        max_iter: Max points to traverse. if -1, maximum number of required
                  points are traversed
    Returns:
        linevox (n x dimension) A cumulative array of all points traversed by
        all the lines so far.
    >>> s = np.array([[3, 1, 9, 0],[0, 0, 3, 0]])
    >>> bresenhamline(s, np.zeros(s.shape[1]), max_iter=-1)
    array([[ 3,  1,  8,  0],
           [ 2,  1,  7,  0],
           [ 2,  1,  6,  0],
           [ 2,  1,  5,  0],
           [ 1,  0,  4,  0],
           [ 1,  0,  3,  0],
           [ 1,  0,  2,  0],
           [ 0,  0,  1,  0],
           [ 0,  0,  0,  0],
           [ 0,  0,  2,  0],
           [ 0,  0,  1,  0],
           [ 0,  0,  0,  0],
           [ 0,  0, -1,  0],
           [ 0,  0, -2,  0],
           [ 0,  0, -3,  0],
           [ 0,  0, -4,  0],
           [ 0,  0, -5,  0],
           [ 0,  0, -6,  0]])
    """
    # Return the points as a single array
    return _bresenhamlines(start, end, max_iter).reshape(-1, start.shape[-1])
if __name__ == "__main__":
    import doctest
    doctest.testmod()
 | 
Download
Copy to clipboard
I added this method to pypedia.com: http://www.pypedia.com/index.php/bresenhamline
For an example of usage go here: http://bit.ly/12ynvmD and press the "Run" button.