''' Approximate the strategy oddments for 2 person zero-sum games of perfect information.
Applies the iterative solution method described by J.D. Williams in his classic
book, The Compleat Strategyst, ISBN 0-486-25101-2. See chapter 5, page 180 for details. '''
from operator import add, neg
def solve(payoff_matrix, iterations=100):
'Return the oddments (mixed strategy ratios) for a given payoff matrix'
transpose = zip(*payoff_matrix)
numrows = len(payoff_matrix)
numcols = len(transpose)
row_cum_payoff = [0] * numrows
col_cum_payoff = [0] * numcols
colpos = range(numcols)
rowpos = map(neg, xrange(numrows))
colcnt = [0] * numcols
rowcnt = [0] * numrows
active = 0
for i in xrange(iterations):
rowcnt[active] += 1
col_cum_payoff = map(add, payoff_matrix[active], col_cum_payoff)
active = min(zip(col_cum_payoff, colpos))[1]
colcnt[active] += 1
row_cum_payoff = map(add, transpose[active], row_cum_payoff)
active = -max(zip(row_cum_payoff, rowpos))[1]
value_of_game = (max(row_cum_payoff) + min(col_cum_payoff)) / 2.0 / iterations
return rowcnt, colcnt, value_of_game
###########################################
# Example solutions to two pay-off matrices
print solve([[2,3,1,4], [1,2,5,4], [2,3,4,1], [4,2,2,2]]) # Example on page 185
print solve([[4,0,2], [6,7,1]]) # Exercise 2 number 3